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Abstract

Exposures to beryllium (Be), even at extremely low levels, can cause severe health effects in a 

percentage of those exposed; consequently, occupational exposure limits (OELs) promulgated for 

this element are the lowest established for any element. This work describes the advantages of 

using highly alkaline dye solutions for determination of Be in occupational hygiene and 

environmental samples by means of an optical molecular fluorescence technique after sample 

extraction in 1–3% (w˖w−1) aqueous ammonium bifluoride (NH4HF2). Improved attributes 

include the ability to further enhance the detection limits of Be in extraction solutions of high 

acidity with minimal dilution, which is particularly beneficial when NH4HF2 solutions of higher 

concentration are used for extraction of Be from soil samples. Significant improvements in Be 

method detection limits (MDLs) are obtained at levels many-fold below those reported previously 

for this methodology. Notably, MDLs for Be of <0.01 ng l−1 / 0.1 ng per sample have been 

attained, which are superior to MDLs routinely reported for this element by means of the most 

widely used ultra-trace elemental measurement technique, inductively coupled plasma mass 

spectrometry (ICP-MS). Very low MDLs for Be are essential in consideration of reductions in 

OELs for this element in workplace air by health organizations and regulatory agencies in the 

USA and internationally. Applications of enhanced Be measurements to air filter samples, surface 

wipe samples, soils and newly-designed occupational air sampler inserts are illustrated.
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1. Introduction

Beryllium (Be) is an extremely useful but highly toxic element that is a key constituent in 

numerous materials such as high-performance ceramics, composites and specialty alloys. 

Be-containing components have myriad industrial, energy and defense uses including 

applications in microelectronic circuitry, medical devices, nuclear reactors, aerospace and 

even sports equipment. In the United States it is estimated that about 35,000 workers are 

exposed to Be during their work activities.1 Exposure by inhalation or surface contact can 

cause immune sensitization in a percentage of those exposed. Once sensitized, succeeding 

exposure by inhalation can lead to chronic beryllium disease (CBD), a debilitating, incurable 

and potentially fatal lung disease. Exposure to airborne Be may also cause lung cancer.1 

Consequently there are efforts to prevent occupational exposures to Be through safety and 

health recommendations and regulations, which in turn raise challenges concerning 

measurement performance requirements for sampling and determination of trace amounts of 

Be in workplaces.

Accurate measurement of Be concentrations at ultra-trace levels in work air samples is 

necessary in consideration of the very low occupational exposure limits (OELs) that have 

been promulgated for this element.2, 3 It has been shown in previous work that a molecular 

fluorescence detection technique using hydroxybenzoquinoline sulfonate (HBQS) as 

fluorophore,4 after sample dissolution in dilute ammonium bifluoride (NH4HF2),5 offers 

method detection limits (MDLs) which are low enough to allow for accurate Be 

measurements at levels well below current OELs in the United States and Europe.6,7 

Adequately low Be MDLs for current OELs in the U.S. are also provided by graphite 

furnace atomic absorption spectrometric (GFAAS)8 and inductively coupled plasma mass 

spectrometric (ICP-MS)9 methods after digestion of samples in appropriate dissolution 

reagents.10

All of the previous work on the use of HBQS fluorescent dye was based on the report from 

Matsumiya et al.4 Those workers demonstrated that it is important that the pH of the dye 

solution and the sample solution be about 12.2 in order to obtain a high fluorescence signal. 

If the pH increased slightly there was a rapid decrease of fluorescent intensity. In addition, 

Matsumiya et al.4 also showed that the fluorescent intensity decreases below pH 12.2, and 

this decrease continues to a pH of about 4.5, below which there is no signal observed above 

the background. Thus the previous work using dilute ammonium bifluoride simplified the 

method by adding lysine to the dye solution (a buffer) so that when the dye solution was 

mixed with acidic solution (dilute ammonium bifluoride) containing the extracted beryllium, 

there was minimal pH shift, thus there was no need for extra titration steps to bring the pH 

back into the desired narrow range near 12.2. From this we postulated that there was no need 

of buffer if we could maintain a highly alkaline pH by adding more base. As is discussed in 

Adams et al. Page 2

Int J Environ Anal Chem. Author manuscript; available in PMC 2018 March 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



this paper, adding more base had many benefits: first, one could dissolve the samples in 

more acidic solutions, and the higher alkalinity of the dye solutions still preserved a high 

enough pH of the mixture to provide good fluorescence signal for beryllium quantification; 

second, one could mix higher amounts of the sample solution relative to the dye solution to 

obtain superior detection limits; and third, since lysine comes from natural sources and 

sometimes it can have naturally fluorescing organic contaminants, its elimination simplified 

the process of making the dye solution and lowered the background signal. The aim of this 

paper was to experimentally demonstrate that removing lysine and increasing alkalinity of 

the dye solution significantly benefits the method.

Since even further improvements in MDLs for airborne Be are desired in anticipation of 

decreasing OELs for this element, including significantly reduced short-term exposure limits 

(STELs), the above improvements, if borne out, can be of high importance. For instance, the 

US Occupational Safety and Health Administration (OSHA) has established a tenfold 

reduction in the permissible exposure limit (PEL), to 0.2 μg m−3 as an 8-hour time-weighted 

average (TWA),11 which is in the neighborhood of the OEL for Be promulgated previously 

by the US Department of Energy (DOE).12 OSHA has also established a STEL (15 min) that 

is on the order of its previous PEL. The American Conference of Governmental Industrial 

Hygienists (ACGIH) Threshold Limit Value (TLV®) for Be is 0.05 μg m−3 as an 8-hour 

TWA (inhalable particles).2 Outside of the U.S. the lowest Be OELs have been promulgated 

in Germany:3 0.14 μg m−3 (inhalable particles) / 0.06 μg m−3 (respirable particles); these 

figures apply to 2-hour TWA sampling as well as a 15-minute STEL. In consideration of the 

above OELs for Be and air sample collection flow rates of 2–10 l min−1 over time durations 

as little as 15 minutes, MDLs in the sub-nanogram per sample range are required to allow 

for quantitative measurements of Be in air at these very low levels.

Apart from air samples, there is a need for accurate measurements of trace levels of Be in 

other occupational and environmental matrices such as surfaces, dusts, soils, etc.13 

Regulatory limits for Be on surfaces (of equipment, workrooms, etc.) have been established 

by DOE, with 0.2 μg Be per 100 cm2 sampling area as the lowest limit for demonstration of 

a contamination-free work environment and for purposes of equipment release.12 

Consequently, methods for sampling Be in surface dust have been developed, evaluated, 

validated and standardized.14∓16 Measurement of trace Be in soils is also important as this 

enables assessment of potential anthropogenic sources of suspected Be-contaminated 

environments.17–19 Molecular fluorescence detection after dilute NH4HF2 extraction with 

heating has been shown to yield Be trace measurement results that are comparable to data 

obtained from atomic spectrometric determination following strong acid digestion.17,20

This work describes further improvements to the dilute NH4HF2 extraction / HBQS 

fluorometric detection method, with demonstrated successful applications to ultra-trace Be 

measurements in air filters, surface wipe samples, soils and newly-available occupational air 

sampler inserts. It is shown that the use of highly alkaline HBQS dye solution for Be 

determination by fluorescence results in significant improvement in MDLs for occupational 

hygiene and environmental samples.
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2. Experimental

Ethylenediaminetetraacetic acid disodium salt dehydrate (EDTA, ≥99%), ferric chloride 

hexahydrate (reagent grade) and L-lysine monohydrochloride (lysine; ≥98%) were obtained 

from Sigma-Aldrich (St. Louis, MO, USA). Ammonium bifluoride (NH4HF2, ≥98%) was 

purchased from Fisher Scientific (Hampton, NH, USA). Hydroxybenzoquinoline sulfonate 

(HBQS) was prepared and purified after the procedure of Matsumiya et al.4 from HBQ 

precursor obtained from Sigma-Aldrich. Aqueous beryllium standard solution (1000 μg 

ml−1) came from Spex Certiprep (Metuchen, NJ, USA). Sodium hydroxide solution (2.5 M), 

plastic centrifuge tubes (15-ml and 50-ml), and plastic syringes with Luer-lock apparatus (5-

ml and 10-ml) were obtained from Fisher Scientific. GH Polypro™ (GHP) hydrophilic 

polypropylene Acrodisc® syringe filters (25-mm dia., 0.2-μm pore size) and nylon bottletop 

filters (500-ml capacity, 0.2-μm pore size) were purchased from Pall Corporation (Port 

Washington, NY, USA). Mixed-cellulose ester (MCE) filters (37-mm dia., 0.8-μm pore size) 

were obtained from SKC (Eighty-Four, PA, USA), and cellulosic cassette inserts (Solu-

Serts®) were provided by Zefon International (Ocala, FL, USA). Whatman 541 filters (47-

mm diameter) were obtained from Sigma-Aldrich. Typically, MCE filters are used for air 

sampling and Whatman filters have been used for surface sampling. Certified MCE filters21 

spiked with known quantities of aqueous beryllium standards (diluted from 1000 μg ml−1 

standard solution) and National Institute of Standards and Technology Standard Reference 

Material (NIST SRM®) 1877 beryllium oxide (NIST, Gaithersburg, MD, USA) were 

provided by High-Purity Standards (North Charleston, SC, USA). Certified reference 

material (CRM) soils with established beryllium contents were obtained from NIST and 

from the Canadian Certified Reference Materials Project (CCRMP, Ottawa, ON, Canada). 

Mechanical pipets (with plastic pipet tips to fit) of various sizes, used in carrying out most 

experiments, were purchased from Eppendorf (Hamburg, Germany).

Measurements of pH were conducted using an Orion 290A+ meter (Thermo Electron, 

Beverly, MA, USA) calibrated using buffer standards of pH 4.0, 7.0, 10.0 and 13.0. Standard 

solutions of pH 4, 7 and 10 were obtained from ACROS (Geel, Belgium) and that for pH 13 

was obtained from Ricca Chemical (Arlington, TX, USA). Deionized (18 MΩ-cm 

resistivity) water, used in all experiments, was prepared using a Barnstead® purification 

system (Thermo Fisher Scientific, Waltham, MA, USA). Where necessary for sample 

agitation, a Labquake® rotator (Thermo Fisher) was used for this purpose.

HBQS fluorometric dye solution containing lysine was made following the procedure 

outlined in ASTM D7202:22 Lysine, 19.508 g (intended for high-pH buffering),23 2.208 g of 

EDTA, and 0.0382 g of HBQS were added to 1800 ml of deionized water. This mixture was 

stirred at room temperature until all constituents had dissolved; the pH of the resultant 

solution was 4.65. For adjustment of the pH to alkaline conditions, to this solution was 

added 150 ml of 2.5 M NaOH; the measured pH of the resulting mixture was 12.77. An 

additional 17 ml of 2.5 M NaOH was added stepwise to bring the pH to 12.86; finally to this 

33 ml of DI water was added and the final pH remained at 12.86. The solution was then 

filtered through a 2-μm GHP polypropylene filter. A highly basic dye solution without lysine 

was prepared as follows: 1.104 g of EDTA, 0.019 g of HBQS and 900 ml of DI water were 

stirred at room temperature until a clear yellow solution was obtained. To this 114.5 ml of 
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2.5 M NaOH was added. After mixing, a clear yellow solution was obtained; this had a 

measured pH of 13.17. The resultant solution was then filtered through a 2-μm filter as 

above. The concentration of the HBQS dye in solutions with and without lysine was the 

same, at 61 μM. These dye solutions were found to be stable (by pH and fluorescence 

measurements) for at least twelve months.

For fluorescence measurements, 2–4 ml of analyte solution was placed into 10-mm path 

length plastic cuvettes with transmittance >330 nm (Sarstedt, Nümbrecht, Germany). 

Fluorescence measurements with excitation at λ of 365 nm or 384 nm were carried out 

using a Modulus fluorometer (Turner Biosystems, Sunnyvale, CA, USA). Some experiments 

using excitation at λ = 384 nm were conducted on a RF 5301PC Spectrofluorometer 

(Shimadzu Scientific, Columbia, MD, USA). Fluorescence emission was monitored at the 

maximum for the HBQS-Be adduct of 480 (±5) nm.4

3. Results and Discussion

To investigate optimized analytical conditions, a suite of experiments was carried out in 

order to characterize the performance of the ultra-trace Be fluorescence measurement 

methodology in lysine-free and lysine-containing dye solutions.22,24,25 Influence on 

background fluorescence signal was studied and a battery of analytical tests on 

representative samples of interest in occupational and environmental hygiene was carried 

out. Of particular interest were comparisons of the analysis results obtained between HBQS 

dye with and without lysine described above, as well as performance studies on a new 

workplace air sampling apparatus (i.e., a cellulosic sampler insert).26

Solutions were made up in deionized water with varying NH4HF2 contents ranging from 1 – 

20% (w˖w−1). In an initial experiment, these NH4HF2 solutions were added to the two dye 

solutions prepared above in a volumetric ratio of 1:19 (20× dilution) and the resulting pH 

was measured (Figure 1). It can be seen that the pH of the solution mixtures (measurement 

solutions) made using dye solution with lysine fell below 12 when these were mixed with 

6% NH4HF2 solution, whereas the pH for lysine-free dye solution remained above 12 for 

solutions containing up to 17% NH4HF2. The lysine-free dye solution was able to tolerate 

more added acid (i.e., NH4HF2) as compared to the solution containing lysine, which is a 

triprotic amino acid (pK1 ≈2.2; pK2 ≈9.0; pK3 ≈10.5).27 The results of Figure 1 show that 

lysine does not provide effective high-pH buffering properties, as has been proposed;23 on 

the contrary, better acid tolerance is observed and high pH is maintained when lysine is 

absent. Both the NH4HF2 and lysine neutralize the hydroxide used in the preparation of the 

dye solutions, such that more NH4HF2 can be added to lysine-free solutions before there are 

any significant changes in pH. These results are important analytically as it is desired to 

maintain very high pH for optimal fluorescence of the HBQS-Be adduct.4 It is also shown 

that the addition of lysine is not only unnecessary but can be disadvantageous when the dye 

solution is challenged with acidic sample extract.

The above solutions with varying percentages of NH4HF2, but containing 4 μg l−1 of 

beryllium in the final mixture (for analysis), were prepared. These solutions were subjected 

to fluorescence measurements, with results (uncorrected for background) shown in Figure 2. 
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It can be seen that the fluorescence signal remains high for lysine-free solutions at much 

higher NH4HF2 content vs. HBQS dye solutions containing lysine. Figure 3 shows the 

dependence of fluorescence intensity on the pH of dye solutions with and without beryllium. 

The results from both lysine-containing and lysine-free dye solutions do not show a rapid 

decrease in fluorescence intensity above a pH of about 12.6. A rapid drop in fluorescence 

intensity is observed at a pH value of about 11 and below (Figure 3). For comparison, the 

change in fluorescence with pH data from Matsumiya et al.4 is shown in Figure 3. (Since 

this is relative fluorescent intensity, the data of Matsumiya et al.4 were normalized so that 

peak intensity of their results coincide with the maximum of our data shown in this figure.) 

When we carried out more detailed analysis we observed a very different trend between data 

from this study and the results of Matsumiya et al. First there was no sharp drop-off the 

fluorescent intensity at higher alkalinity (i.e., higher than 12.2), and second, that there was 

no discernable fluorescent signal below pH 10, and thus the method is not practically usable 

below pH 11; preferably the pH should be at or greater than 11.5. As a practical guideline 

the pH of the mixture of the acidic extraction solution and the dye solution should be about 

12 or higher for effective determination of beryllium by this method. It is noted (Figure 2) 

that the pH drop in lysine-free solution occurs around 19% NH4HF2, whereas the same 

happens at about 7% NH4HF2 for solution containing lysine. This demonstrates that lysine-

free HBQS dye solution can be used with highly acidic starting solutions, a decided 

advantage for certain samples requiring stronger NH4HF2 concentrations for effective 

extraction of Be prior to fluorescence analysis. In all cases, the fluorescence intensity 

resulting from the HBQS-Be adduct when using excitation at 384 nm was about double that 

obtained with excitation at 365 nm.

Dye solutions described above (i.e., with and without lysine) were mixed with 1% and 3% 

NH4HF2 solutions at 20× and 5× dilution, and the resultant pH values were measured (Table 

1). The reason for the choice of these dilutions and concentrations of NH4HF2 solutions is 

that such conditions have been used to analyze surface wipe and air filter samples for Be 

content, which are typically extracted in 1% NH4HF2,5,6 as well as soil samples, where 3% 

NH4HF2 is used for Be extraction.17,20 Usage of highly alkaline solutions allows for the use 

of 5× dilution with 3% NH4HF2 and hence enables Be to be detected with higher sensitivity 

when these solutions are used for extracting Be into an aqueous phase. One may even 

increase the alkalinity of the dye solutions further for applications with yet higher 

concentration of NH4HF2 and/or lower dilutions. When the fluorescence at 480 nm of the 

above solutions was monitored as a function of [Be] over the range 0 – 20 μg l−1, it was 

found that the sensitivity of the method was greater when using lysine-free solution vs. 

solution containing lysine, only because in the former a higher pH could be maintained. This 

is a benefit of the use of highly alkaline conditions sans lysine throughout the measurement 

process.

Method detection limits (MDLs) for Be were estimated by analyzing ten blank media and 

reporting the MDL as three times the standard deviation of the mean blank signal.22 

Calibration solutions were made with known amounts of Be in 1% NH4HF2 solutions and 

were mixed with either dye solution using 20×, 5× or 3× dilution. Batches of filters were 

prepared and analyzed in the presence of soluble Be5 at low concentrations (0.05–2 μg l−1). 

Also, filters spiked with high-fired beryllium oxide (BeO) were subjected to sample 
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preparation and fluorescence analysis. The certified values for Be on BeO-spiked filters 

were within ±15% for all spiking levels. The filters were placed into 15-ml plastic centrifuge 

tubes with 5 ml of 1% NH4HF2 solution, capped, and heated for one hour at 90 °C to extract 

Be into the dilute aqueous NH4HF2 solution. Solutions were analyzed by mixing with highly 

alkaline lysine-free dye solution and also with dye solution which contained lysine. 

Analyses of Be-spiked media were done at least in triplicate using dilutions of 5× and 20× 

(and in some cases 3×) in accordance with procedures delineated in ASTM D7202.22 

Analysis results for Whatman 541 filters are shown in Table 2 and data for MCE filters are 

presented in Table 3.

In another set of experiments, 37-mm diameter cellulosic sampler inserts consisting of MCE 

filters melded to cellulose acetate housings (for insertion into 37-mm air-sampling cassettes: 

Solu-Serts)28 were tested. The Solu-Serts were spiked using pre-determined quantities of 

NH4HF2 solutions containing soluble beryllium and dried. Blank media as well as spikes 

were evaluated in a similar manner as that described earlier for surface sampling media. 

These cassette inserts were folded and inserted into 15-ml centrifuge tubes (in a similar 

fashion as was done for Whatman and MCE filters) and extracted in 5 ml of 1% NH4HF2 

solution at 90 °C for 60 min before being allowed to cool to room temperature. Fluorescence 

at 480 nm was measured after mixing these extract solutions with the lysine-free HBQS dye 

by a 3× dilution factor. The fluorescence values were evaluated against two calibration 

curves for low-level calibration standards (“Low Cal-1” which used 0, 0.05, 0.1, 0.2 and 0.8 

μg l−1 of Be as calibration standards after mixing the dye and the standard solution and 

“Low Cal-2” which used 0, 0.2, 0.5, 0.8 and 4 μg l−1 of Be); the results are shown in Table 4. 

The fluorescence values were corrected for any background contributed by the blank 

sampling media. Optimal results were found using the “Low Cal-2” calibration curve (Table 

4) and show that the method may be used to quantify to as low as 0.5 ng Be per sample in 

cellulosic sampler inserts.

Table 5 shows results on MCE filters spiked with high-fired BeO. The spiked filters were 

obtained commercially. Beryllium was extracted in 5 ml of 1% NH4HF2 solutions as 

described earlier. The table shows the nominal values of Be (values supplied by the 

commercial supplier) and the expected nominal concentration of beryllium in solution 

(assuming 100% recovery) after mixing a portion of the extracted NH4HF2 solution with the 

dye solution in a dilution ratio of 3×. For calibration, solutions were made with soluble 

beryllium in 1% NH4HF2 solutions after mixing them with the dye solutions in a ratio of 1:2 

(3× dilution). Beryllium in the calibration solutions was 0, 0.15, 0.3, 0.6 and 2.4 μg l−1. The 

results on the spiked samples in Table 5 show excellent agreement with the expected values.

Experiments were carried out to investigate if there would be any effect of interference from 

other metals (besides Be) when using highly alkaline solutions. Iron (Fe) was chosen for 

these trials as it has been shown in the past that this element (and also to some extent 

titanium) can cause interference to the fluorescence measurement of the HBQS-Be adduct 

by imparting a yellow color to the measurement solution.5 This interferes with fluorescence 

measurement and biases the results towards lower amounts of measured beryllium.29 The 

yellowness in the solutions may be removed by immediate filtering through GHP 

hydrophilic polypropylene filters of pore size 0.2 μm or finer; alternatively, it is an option to 
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wait for at least two hours for these metal impurities to settle out before filtering. Solutions 

were made up with beryllium and ferric chloride hexahydrate (as a source of Fe) in dilute 

NH4HF2 (1% and 3% NH4HF2 in water) and then mixed with the appropriate dye solution 

(lysine-free or with lysine) using 5× and 20× dilution. In one set the solutions were 

immediately filtered through Acrodisc GHP 25-mm syringe filters with hydrophilic 

polypropylene 0.2 μm membrane. Another set of solutions was left standing for two hours 

and then filtered using similar filters. Control samples with the same concentration of 

beryllium but without Fe were also measured. In each series (i.e., for a specific dye solution 

used, NH4HF2 concentration and dilution factor) the fluorescence intensity was normalized 

to the sample without Fe within the same series. In all of the solutions (mixtures of the dye 

and the sample solutions) the Be concentration was 0.1 μg l−1. The Fe concentration in 

solutions with 20× dilution was 1.1 mg l−1 and for 5× it was 4.4 mg l−1. In each case the Fe 

concentration was more than 10,000 times the Be concentration. The results of these 

experiments are shown in Table 6, and demonstrate that Fe interference to Be fluorescence 

measurement can be effectively eliminated in lysine-free (as well as lysine-containing5) 

HBQS dye solutions.

Experiments were conducted on representative CRM soils to investigate the performance of 

the two dye solutions (i.e., with lysine and lysine-free) as made up above and in accordance 

with ASTM D7458.30 NIST SRM 2710, Montana soil ([Be] = 2.5 μg g−1), and CCRMP 

Till-1 soil ([Be] = 2.4 μg g−1) were analyzed for beryllium content in the following manner. 

The extraction solutions (using 3% aqueous NH4HF2) used in this analysis were the same as 

used in previously-published studies.17,20 Each sample (0.5 g) was extracted in 50 ml 3% 

NH4HF2 at 90 °C for 40 hours. Three aliquots of each the extracted solutions were mixed 

with the respective dye solutions at a 5× dilution ratio. The pH of the dye solution with 

lysine mixed with the sample solution was 9.4, while that for highly alkaline, lysine-free 

solutions was 12.4. Measured [Be] values (n=3) using the high-pH mixture were 2.49 

± 0.014 μg g−1 and 2.04 ± 0.046 μg g−1 (99.5% and 84.9% recovery, respectively), while the 

low-pH (lysine-containing) dye solution yielded Be measurement results for both soils that 

were below the MDL. These trials demonstrate that the use of highly alkaline conditions can 

enable the measurement of low levels of beryllium in bulk environmental samples such as 

soils.

4. Conclusions

The experiments described herein show that there are several advantages in using highly 

alkaline, lysine-free HBQS dye solutions for trace and ultra-trace measurement of Be in 

occupational and environmental samples. Some of the important advantages include: (a) 

facile preparation of HBQS dye solutions sans lysine, which is not only superfluous but can 

be deleterious to high-pH ultra-trace Be fluorometric analysis; (b) solutions of higher acidity 

can be used to extract Be from refractory and silicate materials, without affecting analytical 

sensitivity; (c) standard acidic solutions used for analysis of surface wipes and air samples 

containing 1% NH4HF2 can be mixed with the dye solutions in 3× dilution to enhance the 

MDLs of Be to below 0.1 ng (and quantification from <0.5 ng); (d) these dye solutions may 

be used to enhance the method detection limits of Be in bulk sample analysis such as soils 

by using 5× dilution where 3% NH4HF2 solutions are used for extraction; and (e) 
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interference from Fe is effectively eliminated. The results are important in consideration of 

very low occupational exposure limits for Be that have been established globally and in 

newly-promulgated regulations in the US. The extremely low method detection limits for Be 

will enable short-term airborne workplace exposures to be reliably monitored by means of a 

field-portable technique. The method offers promise for applications to a wider range of 

acidic extraction solutions, which could potentially be used to extract Be from challenging 

metallic samples such as aluminum and specialty alloys as well as ceramic materials.
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Figure 1. 
Effect of NH4HF2 solution concentration on pH when mixed with HBQS dye solution at a 

ratio of 1:19. Open diamonds: lysine-free dye solution; closed squares: dye solution contains 

lysine.
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Figure 2. 
Effect of NH4HF2 solution concentration on HBQS-Be fluorescence intensity when mixed 

with the dye solution at a ratio of 1:19 (4 μg l−1 beryllium). Open diamonds: lysine-free dye 

solution; closed squares: dye solution contains lysine.
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Figure 3. 
Effect of pH on fluorescence intensity when mixed with the dye solution at a ratio of 1:19 

(with and without 4 μg l−1 Be). Open circles and diamonds: lysine-free dye solution (blank 

solution and Be-containing, respectively); closed triangles and squares: dye solution 

contains lysine (blank and containing Be, respectively). Open pentagons represent data from 

Reference 4 (Matsumiya, et al.)
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Table 1

Measurements of pH at 20×, 5× and 3× dilutions with 1% and 3% NH4HF2 (aqueous) when mixed with 

HBQS dye solution with and without lysine. pH values for which the method will not be sensitive for 

beryllium determination are bolded.

NH4HF2 (%, w˖w−1) Dilution ratio pH of lysine-containing HBQS solution pH of lysine-free HBQS solution

1 20× 12.8 13.2

1 5× 12.1 13.1

1 3× 9.4 12.5

3 20× 12.6 13.1

3 5× 9.4 12.2

3 3× 5.6 8.7
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Table 2

Analytical figures of merit for fluorescence analysis of Whatman 541 filters (media blanks and in 0.05–2 μg 

l−1 [Be]) after extraction in 1% (aqueous) NH4HF2.

HBQS dye solution with lysine HBQS dye solution without lysine

Dilution factor 20× 5× 20× 5×

Average media blank fluorescence reading ± Std. 
Dev. (n=10)

193±4.2 264±9.1 225±3.5 233±13

Calibration standards, μg l−1 Be 0, 0.05, 0.2, 0.5, 2 0, 0.05, 0.1, 0.2, 0.8 0, 0.05, 0.2, 0.5, 2 0, 0.05, 0.1, 0.2, 0.8

Calibration fit, slope 1102 1141 1021 1076

Calibration fit, intercept 174 147 207 169

Calibration fit, R2 0.9999 0.9998 1.0000 0.9997

MDL, μg l−1 Be 0.0096 0.0337 0.0123 0.0255

MDL, μg Be 0.00096 0.00084 0.0012 0.00064
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Table 5

Analysis of high-fired beryllium oxide spiked MCE filters using 3× dilution ratio.

Nominal mass of beryllium on filter (μg), and [Be] (μg l−1) 
after mixing extract with dye solution [Be], μg l−1 measured (±Std Dev, n=3) μg Be measured % Recovery

0.0000, 0.000 0.000±0.0008 0.0000 –

0.0005, 0.033 0.029±0.0012 0.0004 89%

0.001, 0.067 0.059±0.0016 0.0009 88%

0.002, 0.133 0.121±0.0027 0.0018 91%

0.005, 0.333 0.289±0.0009 0.0043 87%

0.050, 3.33 2.98±0.037 0.0446 89%

0.480, 32.01 27.9±0.23 0.418 87%
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